在前面(《Flink on YARN部署快速入门指南》的文章中我们简单地介绍了如何在YARN上提交和运行Flink作业,本文将简要地介绍Flink是如何与YARN进行交互的。  YRAN客户端需要访问Hadoop的相关配置文件,从而可以连接YARN资源管理器和HDFS。它使用下面的规则来决定Hadoop配置:  1、判断YARN_CONF_DIR,HADOOP_CONF_DIR或HADOOP_CONF_PATH等环境

w397090770   9年前 (2016-04-04) 6031℃ 0评论8喜欢

Flink

Apache Flink vs Apache Spark

Apache Flink vs Apache Spark
  我们是否还需要另外一个新的数据处理引擎?当我第一次听到Flink的时候这是我是非常怀疑的。在大数据领域,现在已经不缺少数据处理框架了,但是没有一个框架能够完全满足不同的处理需求。自从Apache Spark出现后,貌似已经成为当今把大部分的问题解决得最好的框架了,所以我对另外一款解决类似问题的框架持有很强烈的怀

w397090770   9年前 (2016-04-04) 18141℃ 0评论42喜欢

Flink

如何选择Apache Spark和Apache Flink

如何选择Apache Spark和Apache Flink
  Spark Streaming和Flink都能提供恰好一次的保证,即每条记录都仅处理一次。与其他处理系统(比如Storm)相比,它们都能提供一个非常高的吞吐量。它们的容错开销也都非常低。之前,Spark提供了可配置的内存管理,而Flink提供了自动内存管理,但从1.6版本开始,Spark也提供了自动内存管理。这两个流处理引擎确实有许多相似之处,

w397090770   9年前 (2016-04-02) 4769℃ 0评论5喜欢

Kafka

如何移动Kafka部分分区的数据

如何移动Kafka部分分区的数据
  在《Kafka集群扩展以及重新分布分区》文章中我们介绍了如何重新分布分区,在那里面我们基本上把所有的分区全部移动了,其实我们完全没必要移动所有的分区,而移动其中部分的分区。比如我们想把Broker 1与Broker 7上面的分区数据互换,如下图所示:可以看出,只有Broker 1与Broker 7上面的分区做了移动。来看看移动分区之

w397090770   9年前 (2016-03-31) 3354℃ 0评论4喜欢

Flink

Flink on YARN部署快速入门指南

Flink on YARN部署快速入门指南
  Apache Flink是一个高效、分布式、基于Java和Scala(主要是由Java实现)实现的通用大数据分析引擎,它具有分布式 MapReduce一类平台的高效性、灵活性和扩展性以及并行数据库查询优化方案,它支持批量和基于流的数据分析,且提供了基于Java和Scala的API。  从Flink官方文档可以知道,目前Flink支持三大部署模式:Local、Cluster以及Cloud

w397090770   9年前 (2016-03-30) 24277℃ 6评论22喜欢

Kafka

Key为null时Kafka如何选择分区(Partition)

Key为null时Kafka如何选择分区(Partition)
我们往Kafka发送消息时一般都是将消息封装到KeyedMessage类中:[code lang="scala"]val message = new KeyedMessage[String, String](topic, key, content)producer.send(message)[/code]Kafka会根据传进来的key计算其分区ID。但是这个Key可以不传,根据Kafka的官方文档描述:如果key为null,那么Producer将会把这条消息发送给随机的一个Partition。If the key is null, the

w397090770   9年前 (2016-03-30) 16375℃ 0评论10喜欢

Kafka

Kafka Producer是如何动态感知Topic分区数变化

Kafka Producer是如何动态感知Topic分区数变化
  我们都知道,使用Kafka Producer往Kafka的Broker发送消息的时候,Kafka会根据消息的key计算出这条消息应该发送到哪个分区。默认的分区计算类是HashPartitioner,其实现如下:[code lang="scala"]class HashPartitioner(props: VerifiableProperties = null) extends Partitioner { def partition(data: Any, numPartitions: Int): Int = { (data.hashCode % numPartitions) }}[/code]

w397090770   9年前 (2016-03-29) 9237℃ 0评论9喜欢

Spark meetup

北京第十次Spark meetup会议资料分享

北京第十次Spark meetup会议资料分享
  北京第十次Spark Meetup活动于北京时间2016年03月27日在北京市海淀区丹棱街5号微软亚太研发集团总部大厦1号楼进行。活动内容如下:1. Spark in TalkingData,阎志涛.TalkingData研发副总裁2. Spark in GrowingIO,田毅,GrowingIO数据平台工程师,主要分享GrowingIO使用Spark进行数据处理过程中的各种小技巧,包括:多数据源的访问和使用Bitmap进行

w397090770   9年前 (2016-03-28) 2129℃ 0评论4喜欢

Kafka

Kafka日志删除源码分析

Kafka日志删除源码分析
  昨天Kafka集群磁盘容量达到了90%,于是赶紧将Log的保存时间设置成24小时,但是发现设置完之后Log仍然没有被删除。于是今天特意去看了一下Kafka日志删除相关的代码,于是有了这篇文章。  在使用Kafka的时候我们一般都会根据需求对Log进行保存,比如保存1天、3天或者7天之类的,我们可以通过以下的几个参数实现:[code lan

w397090770   9年前 (2016-03-28) 5543℃ 0评论17喜欢

Spark

Spark MLlib 1.6.1之特征抽取和变换

Spark MLlib 1.6.1之特征抽取和变换
7.1 TF-IDF  TF-IDF是一种特征向量化方法,这种方法多用于文本挖掘,通过算法可以反应出词在语料库中某个文档中的重要性。文档中词记为t,文档记为d , 语料库记为D . 词频TF(t,d) 是词t 在文档d 中出现的次数。文档频次DF(t,D) 是语料库中包括词t的文档数。如果使用词在文档中出现的频次表示词的重要程度,那么很容易取出反例,

w397090770   9年前 (2016-03-27) 6052℃ 0评论6喜欢